Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Year range
1.
Atmosphere ; 14(1):53, 2023.
Article in English | MDPI | ID: covidwho-2166216

ABSTRACT

Background: Air pollution leads to many adverse diseases, especially respiratory diseases and cardiac symptoms. However, it has not been studied the association between air pollution and influenza cases in Jinan City, especially during the outbreak of COVID-19;Methods: The data were obtained from China's Disease Information System, and influenza cases during 2020-2021 in Jinan City were collected from it. We used the generalized additive Poisson model to measure the association between air pollutants and the daily influenza cases after adjusting for possible influence variables;Results: There were 4767 influenza cases. PM2.5 and PM10 on lag 0, lag 3, and lag 4 were significantly associated with an increased risk of influenza;gaseous pollutants (NO2 and SO2) led to higher risk than particulate matter pollutants (PM2.5 and PM10). There were no significant differences for sex subgroup analyses. Except for O3, the incidence risk of males and females was highest on lag 3 and lag 4. For the study of different age groups, influenza cases aged over 59 years had a slightly larger relative risk when exposed to all air pollutants (except O3) than the younger group;Conclusions: The overall number of influenza cases decreased in 2020-2021. PM2.5, SO2, CO, and NO2 were significantly associated with the risk of influenza during 2020-2021. Countermeasures should be developed according to the characteristics of influenza risk to prevent and control it.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.07.479348

ABSTRACT

The newly emerged Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains more than 30 mutations on the spike protein, 15 of which are located within the receptor binding domain (RBD). Consequently, Omicron is able to extensively escape existing neutralizing antibodies and may therefore compromise the efficacy of current vaccines based on the original strain, highlighting the importance and urgency of developing effective vaccines against Omicron. Here we report the rapid generation and evaluation of an mRNA vaccine candidate specific to Omicron. This mRNA vaccine encodes the RBD of Omicron (designated RBD-O) and is formulated with lipid nanoparticle. Two doses of the RBD-O mRNA vaccine efficiently induce neutralizing antibodies in mice; however, the antisera are effective only on the Omicron variant but not on the wildtype and Delta strains, indicating a narrow neutralization spectrum. It is noted that the neutralization profile of the RBD-O mRNA vaccine is opposite to that observed for the mRNA vaccine expressing the wildtype RBD (RBD-WT). Our work demonstrates the feasibility and potency of an RBD-based mRNA vaccine specific to Omicron, providing important information for further development of bivalent or multivalent SARS-CoV-2 vaccines with broad-spectrum efficacy.


Subject(s)
Coronavirus Infections
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.10.475532

ABSTRACT

The SARS-CoV-2 Omicron variant exhibits striking immune evasion and is spreading globally at an unprecedented speed. Understanding the underlying structural basis of the high transmissibility and greatly enhanced immune evasion of Omicron is of high importance. Here through cryo-EM analysis, we present both the closed and open states of the Omicron spike, which appear more compact than the counterparts of the G614 strain, potentially related to the Omicron substitution induced enhanced protomer-protomer and S1-S2 interactions. The closed state showing dominant population may indicate a conformational masking mechanism of immune evasion for Omicron spike. Moreover, we capture two states for the Omicron S/ACE2 complex with S binding one or two ACE2s, revealing that the substitutions on the Omicron RBM result in new salt bridges/H-bonds and more favorable electrostatic surface properties, together strengthened interaction with ACE2, in line with the higher ACE2 affinity of the Omicron relative to the G614 strain. Furthermore, we determine cryo-EM structures of the Omicron S/S3H3 Fab, an antibody able to cross-neutralize major variants of concern including Omicron, elucidating the structural basis for S3H3-mediated broad-spectrum neutralization. Our findings shed new lights on the high transmissibility and immune evasion of the Omicron variant and may also inform design of broadly effective vaccines against emerging variants.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.02.446698

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current SARS-CoV-2 vaccines are based on spike (S) protein, S1 subunit, or receptor-binding domain (RBD) of prototype strain. Emergence of several novel SARS-CoV-2 variants has raised concern about potential immune escape. In this study, we performed an immunogenicity comparison of ancestral RBD, S1, and S ectodomain trimer (S-trimer) antigens and tested the efficacy of these prototype vaccines against the circulating variants, especially B.1.617 that has been linked to India's current COVID-19 surge. We found that RBD and S-trimer proteins could induce significantly higher neutralizing antibody titers than S1 protein. For the three vaccines, the neutralizing titers decreased over time, but still remained high for at least five months after immunization. Importantly, the three prototype vaccines were still effective in neutralizing the variants of concern, although B.1.351 and B.1.617.1 lineages showed varying degrees of reduction in neutralization by the immune sera. The vaccines-induced sera were shown to block receptor binding and inhibit S protein-mediated membrane fusion. In addition, the immune sera did not promote antibody-dependent enhancement (ADE) in vitro. Our work provides valuable information for development of SARS-CoV-2 subunit vaccines and also supports the continued use of ancestral RBD or S-based vaccines to fight the COVID-19 epidemic.


Subject(s)
Coronavirus Infections , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.30.177097

ABSTRACT

The recent outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid international spread pose a global health emergency. The trimeric spike (S) glycoprotein interacts with its receptor human ACE2 to mediate viral entry into host-cells. Here we present cryo-EM structures of an uncharacterized tightly closed SARS-CoV-2 S-trimer and the ACE2-bound-S-trimer at 2.7-Å and 3.8-Å-resolution, respectively. The tightly closed S-trimer with inactivated fusion peptide may represent the ground prefusion state. ACE2 binding to the up receptor-binding domain (RBD) within S-trimer triggers continuous swing-motions of ACE2-RBD, resulting in conformational dynamics of S1 subunits. Noteworthy, SARS-CoV-2 S-trimer appears much more sensitive to ACE2-receptor than SARS-CoV S-trimer in terms of receptor-triggered transformation from the closed prefusion state to the fusion-prone open state, potentially contributing to the superior infectivity of SARS-CoV-2. We defined the RBD T470-T478 loop and residue Y505 as viral determinants for specific recognition of SARS-CoV-2 RBD by ACE2, and provided structural basis of the spike D614G-mutation induced enhanced infectivity. Our findings offer a thorough picture on the mechanism of ACE2-induced conformational transitions of S-trimer from ground prefusion state towards postfusion state, thereby providing important information for development of vaccines and therapeutics aimed to block receptor binding.Competing Interest StatementThe authors have declared no competing interest.View Full Text

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.21.107565

ABSTRACT

Recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic. Currently, there is no vaccine available for preventing SARS-CoV-2 infection. Like closely related severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 also uses its receptor-binding domain (RBD) on the spike (S) protein to engage the host receptor, human angiotensin-converting enzyme 2 (ACE2), facilitating subsequent viral entry. Here we report the immunogenicity and vaccine potential of SARS-CoV-2 RBD (SARS2-RBD)-based recombinant proteins. Immunization with SARS2-RBD recombinant proteins potently induced a multi-functional antibody response in mice. The resulting antisera could efficiently block the interaction between SARS2-RBD and ACE2, inhibit S-mediated cell-cell fusion, and neutralize both SARS-CoV-2 pseudovirus entry and authentic SARS-CoV-2 infection. In addition, the anti-RBD sera also exhibited cross binding, ACE2-blockade, and neutralization effects towards SARS-CoV. More importantly, we found that the anti-RBD sera did not promote antibody-dependent enhancement of either SARS-CoV-2 pseudovirus entry or authentic virus infection of Fc receptor-bearing cells. These findings provide a solid foundation for developing RBD-based subunit vaccines for SARS-CoV2.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.30.071290

ABSTRACT

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two FDA-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 M and 0.31 M respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human ACE2. The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL